Distinct roles of TLR2 and the adaptor ASC in IL-1beta/IL-18 secretion in response to Listeria monocytogenes.
نویسندگان
چکیده
Apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) is an adaptor molecule that has recently been implicated in the activation of caspase-1. We have studied the role of ASC in the host defense against the intracellular pathogen Listeria monocytogenes. ASC was found to be essential for the secretion of IL-1beta/IL-18, but dispensable for IL-6, TNF-alpha, and IFN-beta production, in macrophages infected with Listeria. Activation of caspase-1 was abolished in ASC-deficient macrophages, whereas activation of NF-kappaB and p38 was unaffected. In contrast, secretion of IL-1beta, IL-6, and TNF-alpha was reduced in TLR2-deficient macrophages infected with Listeria; this was associated with impaired activation of NF-kappaB and p38, but normal caspase-1 processing. Analysis of Listeria mutants revealed that cytosolic invasion was required for ASC-dependent IL-1beta secretion, consistent with a critical role for cytosolic signaling in the activation of caspase-1. Secretion of IL-1beta in response to lipopeptide, a TLR2 agonist, was greatly reduced in ASC-null macrophages and was abolished in TLR2-deficient macrophages. These results demonstrate that TLR2 and ASC regulate the secretion of IL-1beta via distinct mechanisms in response to Listeria. ASC, but not TLR2, is required for caspase-1 activation independent of NF-kappaB in Listeria-infected macrophages.
منابع مشابه
Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with Listeria monocytogenes.
Listeria monocytogenes invades the cytoplasm of macrophages and induces the activation of caspase-1 and the subsequent maturation of IL-1beta and IL-18. Although apoptosis-associated speck-like protein containing a caspase-activating and recruitment domain (ASC), an adaptor protein of nucleotide-binding oligomerization domain (Nod)-like receptors, has been shown to play an essential role in ind...
متن کاملSignals triggered by a bacterial pore-forming toxin contribute to toll-like receptor redundancy in gram-positive bacterial recognition.
BACKGROUND Toll-like receptor (TLR) 2 is the principal recognition receptor for gram-positive microbes. However, in some gram-positive bacterial infections, TLR2 is dispensable. One of the outstanding questions regarding host-bacteria interactions is why TLR2 is essential in some infections but dispensable in others. METHODS We used a combination of bacterial plating, flow cytometry, enzyme-l...
متن کاملMultiple Nod-like receptors activate caspase 1 during Listeria monocytogenes infection.
Listeria monocytogenes escapes from the phagosome of macrophages and replicates within the cytosolic compartment. The macrophage responds to L. monocytogenes through detection pathways located on the cell surface (TLRs) and within the cytosol (Nod-like receptors) to promote inflammatory processes aimed at clearing the pathogen. Cytosolic L. monocytogenes activates caspase 1, resulting in post-t...
متن کاملTLR2 Signaling Contributes to Rapid Inflammasome Activation during F. novicida Infection
BACKGROUND Early detection of microorganisms by the innate immune system is provided by surface-expressed and endosomal pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs). Detection of microbial components by TLRs initiates a signaling cascade leading to the expression of proinflammatory cytokines including IL-6 and IL-1β. Some intracellular bacteria subvert the TLR respons...
متن کاملListeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1beta, depending on listeriolysin O and NLRP3.
Different NOD-like receptors, including NLRP1, NLRP3, and NLRC4, as well as the recently identified HIN-200 protein, AIM2, form multiprotein complexes called inflammasomes, which mediate caspase-1-dependent processing of pro-IL-1beta. Listeria monocytogenes is an intracellular pathogen that is actively phagocytosed by monocytes/macrophages and subsequently escapes from the phagosome into the ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 176 7 شماره
صفحات -
تاریخ انتشار 2006